
Evaluation of Programming Language Statements
Xerox Corporation

Initial Bidding Guidance: Low 6 Figures
Within the field of programming, declarative and imperative techniques are both acceptable forms of directing
software operations, each with costs and benefits. Desirable is a combination of both techniques, which
allows concise and declarative notations while reserving fine-grain imperative specifications for difficult
cases. This portfolio is directed to methods and systems for evaluating a programming language statement
capable of dealing with arbitrary structural complexity while preserving relevant type control and keeping the
amount of basic building blocks reasonably small. It is also specific enough, and possessive of defined syntax
and semantics, such that it can be embedded into future languages.

The technique can serve to build transformation models which are less abstract and more general than
rewrite systems, which perform implicit pattern matching and apply built-in strategies for rule application.
The technique is abstract enough to simplify and extend general purpose programming languages, and is
important in the design of new transformation techniques or in the extension of existing ones.

Four basic topics are addressed in a single approach: the definition of a data model, the definition of matching
operations, the definition of a transformation model, and the integration of the transformation model in a
programming language.

Forward Citing Companies: Bea Systems, IBM, Landmark Graphics, Microsoft, NEC Laboratories, Oracle,
Siemens AG

Priority Date: 01-16-2002

Representative Claim: US 7,543,015 – Claim #1
A program stored on a computer-readable medium that causes a computer to execute steps to determine
whether a computer-storable expression matches a filter, comprising: identifying and testing the structural
form of the expression; choosing a transformation model for the filter that is compatible with the structural
form of the expression; evaluating a first code structure representing the expression to determine a value of
said expression prior to filtering; analyzing a second code structure representing the filter to determine the
characteristics of the filter, wherein the second code structure comprises a plurality of filter characteristics
corresponding to a plurality of structural forms of the first code structure, the plurality of structural forms
comprising text, trees, and graphs, and wherein the second code structure applies a filter corresponding
to the structural form of the first code structure; and filtering said evaluated value according to the filter
characteristics, wherein said first code structure is constructed from a plurality of first programming
language code structure elements and said second code structure is constructed from a plurality of second
programming language code structure elements, each second structure element being symmetrically
constructed to correspond to one of said first structure elements, and wherein evaluating, analyzing and
filtering are performed upon explicit invocation of a matching operator, and filtering comprises returning a
boolean evaluation result value.

Contact:
For more information on the assets available for sale in this portfolio, contact Paul Greco.
Paul Greco
Senior Vice President
Paul@icapip.com
(212) 815-6692

The information that has been provided is believed to be complete to the extent provided and described, but ICAP Patent Brokerage makes
no warranty that it is complete for all purposes or any specific purpose, industry, or business. Each party considering the portfolio is cautioned
to make its own analysis regarding the utility and coverage of the portfolio, and to seek independent assistance in doing so.

Technology
Combinators for
programming
language based upon
structural pattern-
matching

Novelty
Method and system
for evaluating
a programming
language statement
capable of dealing
with arbitrary
structural
complexity, thus
enabling pattern-
matching operations
on arbitrary complex
data structures with
minimal basic building
blocks. By using
imperative connectors,
the design of new
programming
languages or the
extension of existing
programming
languages are
rendered possible with
constructions that
provide innovative
expressiveness.
Resulting languages
are located at an
intermediate level
of abstraction,
between declarative,
functional, and
imperative languages

Importance
A valuable portfolio
for companies
producing
programming
languages and pattern
matching systems

Number of assets
2

US Patents (2)
7,240,331
7,543,015

Please inquire for a
complete asset listing.

PaTEnT bRoKERagE

